Inactivation of the KSRP gene modifies collagen antibody induced arthritis

KSRP基因失活可改变胶原抗体诱发的关节炎

阅读:5
作者:Rudolf Käfer, Katharina Schrick, Lisa Schmidtke, Evelyn Montermann, Dominika Hobernik, Matthias Bros, Ching-Yi Chen, Hartmut Kleinert, Andrea Pautz

Abstract

The KH type splicing regulatory protein (KSRP) is a nucleic acid binding protein, which negatively regulates the stability and/or translatability of many mRNA species encoding immune-relevant proteins. As KSRP is expressed in immune cells including T and B cells, neutrophils, macrophages and dendritic cells, we wanted to analyze its importance for the development of autoimmune diseases. We chose collagen antibody-induced arthritis (CAIA) as an appropriate autoimmune disease mouse model in which neutrophils and macrophages constitute the main effector cell populations. We compared arthritis induction in wild type (WT) and KSRP-/- mice and paws were taken for histological sections and qPCR analysis. Furthermore, we determined the frequencies of spleen immune cells by flow cytometry. Cytokine levels in spleen cell supernatants were determined by cytometric bead array analyses (CBA). After CAIA induction we unexpectedly observed in WT animals much stronger swelling of the paws than in KSRP-/- mice. In accordance, histological staining of paw sections of KSRP-/- animals revealed much lower frequencies of infiltrating immune cells in the joints compared to WT animals. Furthermore, CAIA-treatment resulted in reduced expression of several inflammatory factors (like CXCL-1, iNOS, TNF-α and S100A8) as well as immune cell marker genes (e.g. LFA-1, CD68, Ly6G) in the joints of KSRP-/- mice. Spleen cells of KSRP-/- mice showed lower frequencies of myeloid cells. On cytokine level IFN-γ production was increased in spleen cells of KSRP-/- mice compared to WT samples. These data surprisingly suggest that the absence of KSRP protects against the induction of inflammatory arthritis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。