Chronic imipramine but not bupropion increases arachidonic acid signaling in rat brain: is this related to 'switching' in bipolar disorder?

阅读:3
作者:Lee H-J, Rao J S, Chang L, Rapoport S I, Kim H-W
Agents effective against mania in bipolar disorder are reported to decrease turnover of arachidonic acid (AA) in phospholipids and expression of calcium-dependent AA-selective cytosolic phospholipase A(2) (cPLA(2)) in rat brain. In contrast, fluoxetine, an antidepressant that is reported to switch bipolar depressed patients to mania, increases cPLA(2) expression and AA turnover in rat brain. We therefore hypothesized that antidepressants that increase switching to mania generally increase cPLA(2) and AA turnover in brain. To test this hypothesis, adult male CDF-344 rats were administered imipramine and bupropion, with reported high and low switching rates, respectively, at daily doses of 10 and 30 mg kg(-1) i.p., respectively, or i.p. saline (control) for 21 days. Frontal cortex expression of different PLA(2) enzymes and AA turnover rates in brain when the rats were unanesthetized were measured. Compared with chronic saline, chronic imipramine but not bupropion significantly increased cortex cPLA(2) mRNA activity, protein and phosphorylation, expression of the cPLA(2) transcription factor, activator protein-2alpha (AP-2alpha) and AA turnover in phospholipids. Protein levels of secretory phospholipase A(2), calcium-independent phospholipase A(2), cyclooxygenase (COX)-1 and COX-2 were unchanged, and prostaglandin E(2) was unaffected. These results, taken with prior data on chronic fluoxetine in rats, suggest that antidepressants that increase the switching tendency of bipolar depressed patients to mania do so by increasing AA recycling and metabolism in brain. Mania in bipolar disorder thus may involve upregulated brain AA metabolism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。