Identification of stress defensive proteins in common wheat-Thinopyron intermedium translocation line YW642 developing grains via comparative proteome analysis.

阅读:13
作者:Lu Yuxia, Wu Jisu, Wang Ruomei, Yan Yueming
Thinopyrum intermedium (2n = 6x = 42, E(1)E(1)E(2)E(2)XX) serves as an important gene source of desirable traits for genetic improvement of wheat cultivars resistant to stresses. This study used the comparative proteomic approach to identify stress defense related proteins in the developing grains of common wheat (Zhongmai 8601)-Thinopyron intermedium 7XL/7DS translocation line YW642 and to explore their potential values for improving wheat stress resistance. Two-dimensional electrophoresis identified 124 differentially accumulated protein spots representing 100 unique proteins, which mainly participated in stress defense, energy metabolism, protein metabolism and folding and storage protein synthesis. Among these, 16 were unique and 35 were upregulated in YW642. The upregulated DAPs were mainly involved in biotic and abiotic stress defense. Further cis-elements analysis of these stress-related DAP genes revealed that phytohormone responsive elements such as ABREs, G-box, CGTCA-motif and TGACG-motif, and environment responsive element As-1 were particularly abundant, which could play important roles in response to various stressors. Transcription expression analysis by RNA-seq and qRT-PCR demonstrated a large part of the stress-related DAP genes showed an upregulated expression in the early-to-middle stages of grain development. Our results proved that Thinopyron intermedium contains abundant stress responsive proteins that have potential values for the genetic improvement of wheat stress resistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。