Lung cancer is the leading cause of cancer death. Since lung cancer appears as nodules in the early stage, detecting the pulmonary nodules in an early phase could enhance the treatment efficiency and improve the survival rate of patients. The development of computer-aided analysis technology has made it possible to automatically detect lung nodules in Computed Tomography (CT) screening. In this paper, we propose a novel detection network, TiCNet. It is attempted to embed a transformer module in the 3D Convolutional Neural Network (CNN) for pulmonary nodule detection on CT images. First, we integrate the transformer and CNN in an end-to-end structure to capture both the short- and long-range dependency to provide rich information on the characteristics of nodules. Second, we design the attention block and multi-scale skip pathways for improving the detection of small nodules. Last, we develop a two-head detector to guarantee high sensitivity and specificity. Experimental results on the LUNA16 dataset and PN9 dataset showed that our proposed TiCNet achieved superior performance compared with existing lung nodule detection methods. Moreover, the effectiveness of each module has been proven. The proposed TiCNet model is an effective tool for pulmonary nodule detection. Validation revealed that this model exhibited excellent performance, suggesting its potential usefulness to support lung cancer screening.
TiCNet: Transformer in Convolutional Neural Network for Pulmonary Nodule Detection on CT Images.
阅读:5
作者:Ma Ling, Li Gen, Feng Xingyu, Fan Qiliang, Liu Lizhi
| 期刊: | J Imaging Inform Med | 影响因子: | 0.000 |
| 时间: | 2024 | 起止号: | 2024 Feb;37(1):196-208 |
| doi: | 10.1007/s10278-023-00904-y | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
