Slime mold algorithm (SMA) is a recently developed meta-heuristic algorithm that mimics the ability of a single-cell organism (slime mold) for finding the shortest paths between food centers to search or explore a better solution. It is noticed that entrapment in local minima is the most common problem of these meta-heuristic algorithms. Thus, to further enhance the exploitation phase of SMA, this paper introduces a novel chaotic algorithm in which sinusoidal chaotic function has been combined with the basic SMA. The resultant chaotic slime mold algorithm (CSMA) is applied to 23 extensively used standard test functions and 10 multidisciplinary design problems. To check the validity of the proposed algorithm, results of CSMA has been compared with other recently developed and well-known classical optimizers such as PSO, DE, SSA, MVO, GWO, DE, MFO, SCA, CS, TSA, PSO-DE, GA, HS, Ray and Sain, MBA, ACO, and MMA. Statistical results suggest that chaotic strategy facilitates SMA to provide better performance in terms of solution accuracy. The simulation result shows that the developed chaotic algorithm outperforms on almost all benchmark functions and multidisciplinary engineering design problems with superior convergence.
An effective solution to numerical and multi-disciplinary design optimization problems using chaotic slime mold algorithm.
阅读:4
作者:Dhawale Dinesh, Kamboj Vikram Kumar, Anand Priyanka
| 期刊: | Eng Comput | 影响因子: | 0.000 |
| 时间: | 2022 | 起止号: | 2022;38(Suppl 4):2739-2777 |
| doi: | 10.1007/s00366-021-01409-4 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
