With the pressing global challenge of climate change, the potential to breed cattle that produce less lifetime methane offers a transformative solution that is both sustainable and impactful. The objective of this study was to determine the genetic correlations between enteric methane emissions and economically important traits included in the current terminal index used to breed animals for meat in Ireland. This terminal index is typical of terminal-type indexes used globally, constituting traits associated with calving performance, carcass merit, and efficiency traits such as feed intake and age at finish, as well as some ancillary traits such as docility. Methane and carbon dioxide flux measurements recorded from 2018 to 2024 using 10 GreenFeed Emission Monitoring systems in a progeny performance test center on 1,835 beef animals and a more expansive dataset from commercial farmers with phenotypic performance data on calving performance, carcass quality, and efficiency traits were available on up to 402,039 animals for analyses. Five trait definitions for methane and carbon dioxide emissions were derived: individual spot measures, 1-d, 5-d, and 10-d averages of spot measures, and a full test average per animal, where all emission measurements were averaged across the test period. (Co)variance components between all trait definitions and phenotypic performance traits were estimated using animal linear mixed models. Methane emissions were strongly correlated with feed intake ranging from 0.49 (standard error [SE]â =â 0.119) to 0.76 (SEâ =â 0.057) and carcass weight ranging from 0.44 (SEâ =â 0.050) to 0.50 (SEâ =â 0.060) across trait definitions, suggesting that selection for reduced methane emissions could adversely impact growth and performance. An antagonistic correlation was found between methane and age at finish ranging -0.27 (SEâ =â 0.063) to -0.18 (SEâ =â 0.084), which suggests that animals who have an earlier finishing age produce more methane per day. Carcass conformation was positively weakly correlated with methane (0.09 to 0.12), thus suggesting there is a potential to select for improved carcass conformation with minimal impact on enteric methane emissions. Overall, these findings emphasize the need for breeding strategies that capture the trade-offs between reducing methane emissions and preserving economically valuable traits such as feed intake, carcass weight, and conformation in beef finishing systems.
Genetic correlations between enteric methane and traits of economic importance in a beef finishing system.
阅读:19
作者:Ryan Clodagh V, Pabiou Thierry, Purfield Deirdre C, Kelly David N, Murphy Craig P, Evans Ross D
| 期刊: | Journal of Animal Science | 影响因子: | 2.900 |
| 时间: | 2025 | 起止号: | 2025 Jan 4; 103:skaf162 |
| doi: | 10.1093/jas/skaf162 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
