Attenuated outward potassium currents in carotid body glomus cells of heart failure rabbit: involvement of nitric oxide.

阅读:6
作者:Li Yu-Long, Sun Shu-Yu, Overholt Jeffery L, Prabhakar Nanduri R, Rozanski George J, Zucker Irving H, Schultz Harold D
It has been shown that peripheral chemoreceptor sensitivity is enhanced in both clinical and experimental heart failure (HF) and that impairment of nitric oxide (NO) production contributes to this enhancement. In order to understand the cellular mechanisms associated with the alterations of chemoreceptor function and the actions of NO in the carotid body (CB), we compared the outward K+ currents (IK) of glomus cells in sham rabbits with that in HF rabbits and monitored the effects of NO on these currents. Ik was measured in glomus cells using conventional and perforated whole-cell configurations. IK was attenuated in glomus cells of HF rabbits, and their resting membrane potentials (-34.7 +/- 1.0 mV) were depolarized as compared with those in sham rabbits (-47.2 +/- 1.9 mV). The selective Ca(2+)-dependent K+ channel (KCa) blocker iberiotoxin (IbTx, 100 nm) reduced IK in glomus cells from sham rabbits, but had no effect on IK from HF rabbits. In perforated whole-cell mode, the NO donor SNAP (100 microm) increased IK in glomus cells from HF rabbits to a greater extent than that in sham rabbits (P < 0.01), and IbTx inhibited the effects of SNAP. However, in conventional whole-cell mode, SNAP had no effect. N omega-nitro-L-arginine (L-NNA, NO synthase inhibitor) decreased Ik in sham rabbits but not in HF rabbits. The guanylate cyclase inhibitor 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one (ODQ) inhibited the effect of SNAP on Ik. These results demonstrate that IK is reduced in CB glomus cells from HF rabbits. This effect is due mainly to the suppression of KCa channel activity caused by decreased availability of NO. In addition, intracellular cGMP is necessary for the KCa channel modulation by NO.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。