Crocodile optimization algorithm for solving real-world optimization problems.

阅读:4
作者:Yan Fu, Zhang Jin, Yang Jianqiang
Nature-inspired bionic algorithms have become one of the most fascinating techniques in computational intelligence research, and have shown great potential in real-world challenging problems for their simplicity and flexibility. This paper proposes a novel nature-inspired algorithm, called the crocodile optimization algorithm (COA), which mimics the hunting strategies of crocodiles. In COA, the hunting behavior of crocodiles includes premeditation and waiting hunting. The premeditation behavior is an important hunting way for crocodiles to hide themselves from their prey and to explore more potential areas, and the waiting hunting behavior is another means by which crocodiles make surprise attacks on their prey that appears in their hunting range. The performance of the proposed COA is validated by comparing it with other competitor algorithms on 29 standard test functions and 5 real-world engineering optimization problems. The experimental results show that the comprehensive performance of COA outperforms both of its similar variants and most of other state-of-the-art algorithms, in terms of solution accuracy, robustness and convergence speed. Statistical tests also validate the potential applications of the proposed algorithm.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。