PURPOSE: The current study aimed to propose a Deep Learning (DL) and Augmented Reality (AR) based solution for a in-vivo robot-assisted radical prostatectomy (RARP), to improve the precision of a published work from our group. We implemented a two-steps automatic system to align a 3D virtual ad-hoc model of a patient's organ with its 2D endoscopic image, to assist surgeons during the procedure. METHODS: This approach was carried out using a Convolutional Neural Network (CNN) based structure for semantic segmentation and a subsequent elaboration of the obtained output, which produced the needed parameters for attaching the 3D model. We used a dataset obtained from 5 endoscopic videos (A, B, C, D, E), selected and tagged by our team's specialists. We then evaluated the most performing couple of segmentation architecture and neural network and tested the overlay performances. RESULTS: U-Net stood out as the most effecting architectures for segmentation. ResNet and MobileNet obtained similar Intersection over Unit (IoU) results but MobileNet was able to elaborate almost twice operations per seconds. This segmentation technique outperformed the results from the former work, obtaining an average IoU for the catheter of 0.894 (Ï = 0.076) compared to 0.339 (Ï = 0.195). This modifications lead to an improvement also in the 3D overlay performances, in particular in the Euclidean Distance between the predicted and actual model's anchor point, from 12.569 (Ï= 4.456) to 4.160 (Ï = 1.448) and in the Geodesic Distance between the predicted and actual model's rotations, from 0.266 (Ï = 0.131) to 0.169 (Ï = 0.073). CONCLUSION: This work is a further step through the adoption of DL and AR in the surgery domain. In future works, we will overcome the limits of this approach and finally improve every step of the surgical procedure.
Real-time deep learning semantic segmentation during intra-operative surgery for 3D augmented reality assistance.
阅读:4
作者:Tanzi Leonardo, Piazzolla Pietro, Porpiglia Francesco, Vezzetti Enrico
| 期刊: | International Journal of Computer Assisted Radiology and Surgery | 影响因子: | 2.300 |
| 时间: | 2021 | 起止号: | 2021 Sep;16(9):1435-1445 |
| doi: | 10.1007/s11548-021-02432-y | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
