Hidden Markov model variants and their application.

阅读:3
作者:Winters-Hilt, Stephen
Markov statistical methods may make it possible to develop an unsupervised learning process that can automatically identify genomic structure in prokaryotes in a comprehensive way. This approach is based on mutual information, probabilistic measures, hidden Markov models, and other purely statistical inputs. This approach also provides a uniquely common ground for comparative prokaryotic genomics. The approach is an on-going effort by its nature, as a multi-pass learning process, where each round is more informed than the last, and thereby allows a shift to the more powerful methods available for supervised learning at each iteration. It is envisaged that this "bootstrap" learning process will also be useful as a knowledge discovery tool. For such an ab initio prokaryotic gene-finder to work, however, it needs a mechanism to identify critical motif structure, such as those around the start of coding or start of transcription (and then, hopefully more).For eukaryotes, even with better start-of-coding identification, parsing of eukaryotic coding regions by the HMM is still limited by the HMM's single gene assumption, as evidenced by the poor performance in alternatively spliced regions. To address these complications an approach is described to expand the states in a eukaryotic gene-predictor HMM, to operate with two layers of DNA parsing. This extension from the single layer gene prediction parse is indicated after preliminary analysis of the C. elegans alt-splice statistics. State profiles have made use of a novel hash-interpolating MM (hIMM) method. A new implementation for an HMM-with-Duration is also described, with far-reaching application to gene-structure identification and analysis of channel current blockade data.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。