A competent low permeability and chemically inert geological barrier is an essential component of any strategy for the deep geological disposal of fluidized hazardous material and greenhouse gases. While the processes of injection are important to the assessment of the sequestration potential of the storage formation, the performance of the caprock is important to the containment potential, which can be compromised by the development of cracks and other defects that might be activated during and after injection. This paper presents a mathematical modelling approach that can be used to assess the state of stress in a surficial caprock during injection of a fluid to the interior of a poroelastic storage formation. Important information related to time-dependent evolution of the stress state and displacements of the surficial caprock with injection rates, and the stress state in the storage formation can be obtained from the theoretical developments. Most importantly, numerical results illustrate the influence of poromechanics on the development of adverse stress states in the geological barrier. The results obtained from the mathematical analysis illustrate that the surface heave increases as the hydraulic conductivity of the caprock decreases, whereas the surface heave decreases as the shear modulus of the caprock increases. The results also illustrate the influence of poromechanics on the development of adverse stress states in the caprock.
Poromechanical behaviour of a surficial geological barrier during fluid injection into an underlying poroelastic storage formation.
阅读:3
作者:Selvadurai A P S, Kim Jueun
| 期刊: | Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences | 影响因子: | 3.000 |
| 时间: | 2016 | 起止号: | 2016 Mar;472(2187):20150418 |
| doi: | 10.1098/rspa.2015.0418 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
