Topological Defects Created by Gamma Rays in a Carbon Nanotube Bilayer.

阅读:7
作者:Grushevskaya Halina, Timoshchenko Andrey, Lipnevich Ihor
Graphene sheets are a highly radiation-resistant material for prospective nuclear applications and nanoscale defect engineering. However, the precise mechanism of graphene radiation hardness has remained elusive. In this paper, we study the origin and nature of defects induced by gamma radiation in a graphene rolled-up plane. In order to reduce the environmental influence on graphene and reveal the small effects of gamma rays, we have synthesized a novel graphene-based nanocomposite material containing a bilayer of highly aligned carbon nanotube assemblies that have been decorated by organometallic compounds and suspended on nanoporous Al2O3 membranes. The bilayer samples were irradiated by gamma rays from a 137Cs source with a fluence rate of the order of 105 m-2s-1. The interaction between the samples and gamma quanta results in the appearance of three characteristic photon escape peaks in the radiation spectra. We explain the mechanism of interaction between the graphene sheets and gamma radiation using a pseudo-Majorana fermion graphene model, which is a quasi-relativistic N=3-flavor graphene model with a Majorana-like mass term. This model admits the existence of giant charge carrier currents that are sufficient to neutralize the impact of ionizing radiation. Experimental evidence is provided for the prediction that the 661.7-keV gamma quanta transfer enough energy to the electron subsystem of graphene to bring about the deconfinement of the bound pseudo-Majorana modes and involve C atoms in a vortical motion of the electron density flows in the graphene plane. We explain the radiation hardness of graphene by the topological non-triviality of the pseudo-Majorana fermion configurations comprising the graphene charge carriers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。