BACKGROUND: Identifying high data-continuity patients in an electronic health record (EHR) system may facilitate selecting cohorts with a lower degree of variable misclassification and promote study validity. We updated a previously developed algorithm for identifying patients with high EHR data-completeness by adding demographic and health utilization factors to improve adaptability to networks serving patients of diverse backgrounds. We also expanded the algorithm to accommodate data in the ICD-10 era. METHODS: We used Medicare claims linked with EHR data to identify individuals aged â¥65 years. EHR-continuity was defined as the proportion of encounters captured in EHR data relative to claims. We compared the model with additional demographic factors and their interaction terms with other predictors with the original algorithm and assessed the performance by area under the ROC curve (AUC) and net reclassification index (NRI). RESULTS: The study cohort consisted of 264,099 subjects. The updated prediction model had an AUC of 0.93 in the validation set. Compared to the previous model, the new model had an NRI of 37.4% (p<0.001) for EHR-continuity classification. Interaction terms between demographic variables and other predictors did not improve the performance. Patients within the top 20% of predicted EHR-continuity had four times less misclassification of key variables compared to the remaining population. CONCLUSION: Adding demographic and healthcare utilization variables significantly improved the model performance. Patients with high predicted EHR-continuity had less misclassification of study variables compared to the remaining population in both ICD-9 and 10 eras.
Advancing an Algorithm for the Identification of Patients with High Data-Continuity in Electronic Health Records.
阅读:5
作者:Merola David, Schneeweiss Sebastian, Jin Yinzhu, Lii Joyce, Lin Kueiyu Joshua
| 期刊: | Clinical Epidemiology | 影响因子: | 3.200 |
| 时间: | 2022 | 起止号: | 2022 Nov 8; 14:1339-1349 |
| doi: | 10.2147/CLEP.S370031 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
