Although under-five mortality (U5M) rates have declined worldwide, many countries in sub-Saharan Africa still have much higher rates. Detection of subnational areas with unusually higher U5M rates could support targeted high impact child health interventions. We propose a novel group outlier detection statistic for identifying areas with extreme U5M rates under a multivariate survival data model. The performance of the proposed statistic was evaluated through a simulation study. We applied the proposed method to an analysis of child survival data in Malawi to identify sub-districts with unusually higher or lower U5M rates. The simulation study showed that the proposed outlier statistic can detect unusual high or low mortality groups with a high accuracy of at least 90%, for datasets with at least 50 clusters of size 80 or more. In the application, at most 7 U5M outlier sub-districts were identified, based on the best fitting model as measured by the Akaike information criterion (AIC).
A novel outlier statistic in multivariate survival models and its application to identify unusual under-five mortality sub-districts in Malawi.
阅读:3
作者:Kaombe Tsirizani M, Manda Samuel O M
| 期刊: | J Appl Stat | 影响因子: | 0.000 |
| 时间: | 2023 | 起止号: | 2022 Mar 3; 50(8):1836-1852 |
| doi: | 10.1080/02664763.2022.2043255 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
