A growing number of humans have suffered severe chronic illnesses, which has caused a boost in the requirement for diagnostic and medical treatment procedures that are both accurate and fast. Improved patient conditions and enhanced Decision-Making Systems (DMS) for healthcare professionals are the primary objectives of the Clinical Decision Support System (CDSS) recommended in this research article. The main drawback of traditional Machine Learning (ML) techniques is their failure to predict reliably. To solve this problem, the proposed model creates an Ensemble Extreme Learning Machine (EN-ELM) algorithm that combines predictors trained on several different data sets. This lowers the chance of overfitting. The suggested CDSS uses many different data processing methods, including Adaptive Synthetic (ADASYN) and isolation Forest (iForest), which fix problems like outliers and class imbalance. This approach significantly enhances the framework's classification performance. Also, the CDSS is compatible with an EC model, which enables real-time computation while minimizing the requirement for integrated systems. The recommended CDSS applies iForest and ADASYN to execute large-scale trials validating high standards of accuracy across numerous datasets. Researchers concluded that a suitable ELM classification threshold of 85% is the most effective, which substantially boosts the accuracy of the predictive model. When applied to various medical datasets, such as Hepatocellular Carcinoma (HCC), Cervical Cancer, Chronic Kidney Disease (CKD), Heart Disease, and Arrhythmia, the EN-ELM achieved accuracy rates of 99.36%, 98.15%, 97.85%, 97.06%, and 96.72%, respectively. By measuring this progress, the CDSS could dramatically improve the accuracy of chronic illness diagnosis and treatment, which similarly affects clinicians.
Edge computing-based ensemble learning model for health care decision systems.
阅读:4
作者:Vincent Asir Chandra Shinoo Robert, Sengan Sudhakar
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2024 | 起止号: | 2024 Nov 6; 14(1):26997 |
| doi: | 10.1038/s41598-024-78225-5 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
