Ceramides are bioactive sphingolipids crucial for regulating cellular metabolism. Ceramides and dihydroceramides are synthesized by six ceramide synthase (CerS) enzymes, each with specificity for different acyl-CoA substrates. Ceramide with a 16-carbon acyl chain (C16 ceramide) has been implicated in obesity, insulin resistance and liver disease and the C16 ceramide-synthesizing CerS6 is regarded as an attractive drug target for obesity-associated disease. Despite their importance, the molecular mechanism underlying ceramide synthesis by CerS enzymes remains poorly understood. Here we report cryo-electron microscopy structures of human CerS6, capturing covalent intermediate and product-bound states. These structures, along with biochemical characterization, reveal that CerS catalysis proceeds through a ping-pong reaction mechanism involving a covalent acyl-enzyme intermediate. Notably, the product-bound structure was obtained upon reaction with the mycotoxin fumonisin B1, yielding insights into its inhibition of CerS. These results provide a framework for understanding CerS function, selectivity and inhibition and open routes for future drug discovery.
Structural basis of the mechanism and inhibition of a human ceramide synthase.
阅读:6
作者:Pascoa Tomas C, Pike Ashley C W, Tautermann Christofer S, Chi Gamma, Traub Michael, Quigley Andrew, Chalk Rod, Å tefaniÄ SaÅ¡a, Thamm Sven, Pautsch Alexander, Carpenter Elisabeth P, Schnapp Gisela, Sauer David B
| 期刊: | Nature Structural & Molecular Biology | 影响因子: | 10.100 |
| 时间: | 2025 | 起止号: | 2025 Mar;32(3):431-440 |
| doi: | 10.1038/s41594-024-01414-3 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
