Enhanced degradation of indeno(1,2,3-cd)pyrene using Candida tropicalis NN4 in presence of iron nanoparticles and produced biosurfactant: a statistical approach

在铁纳米粒子存在下使用热带假丝酵母 NN4 增强茚并(1,2,3-cd)芘的降解并产生生物表面活性剂:一种统计方法

阅读:5
作者:Nupur Ojha, Sanjeeb Kumar Mandal, Nilanjana Das

Abstract

Seven yeast isolates were screened for the remediation of indeno(1,2,3-cd)pyrene (InP) using biosynthesized iron nanoparticles and produced biosurfactant in growth medium. Four yeast isolates showed positive response to produce biosurfactant which was confirmed by drop collapse test, emulsification index, methylene blue agar plate method, oil displacement test and lipase activity. The yeast strain showing maximum potential for InP degradation and biosurfactant production was identified as Candida tropicalis NN4. The produced biosurfactant was characterized as sophorolipid type through TLC and FTIR analysis. Iron nanoparticles were biosynthesized using mint leaf extract and characterized by various instrumental analysis. Response surface methodology (RSM), three-level five-variable Box-Behnken design (BBD) was employed to optimize the factors, viz., pH (7), temperature (30 °C), salt concentration (1.5 g L-1), incubation time (15 days) and iron nanoparticles concentration (0.02 g L-1) for maximum InP degradation (90.68 ± 0.7%) using C. tropicalis NN4. It was well in close agreement with the predicted value which was obtained by RSM model (90.68 ± 0.4%) indicating the validity of the model. InP degradation was confirmed through FTIR and GC-MS analysis. A kinetic study demonstrated that InP degradation fitted first-order kinetic model. This is the first report on yeast-mediated nanobioremediation of InP and optimization of the whole process using RSM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。