Evolutionary comparisons suggest many novel cAMP response protein binding sites in Escherichia coli.

阅读:7
作者:Brown C T, Callan C G Jr
The cAMP response protein (CRP) is a transcription factor known to regulate many genes in Escherichia coli. Computational studies of transcription factor binding to DNA are usually based on a simple matrix model of sequence-dependent binding energy. For CRP, this model predicts many binding sites that are not known to be functional. If they are indeed spurious, the underlying binding model is called into question. We use a species comparison method to assess the functionality of a population of such predicted CRP sites in E. coli. We compare them with orthologous sites in Salmonella typhimurium identified independently by CLUSTALW alignment, and find a dependence of mutation probability on position in the site. This dependence increases with predicted site binding energy. The positions where mutation is most strongly suppressed are those where mutation would have the biggest effect on predicted binding energy. This finding suggests that many of the novel sites are functional, that the matrix model correctly estimates their binding strength, and that calculated CRP binding strength is the quantity that is conserved between species. The analysis also identifies many new E. coli binding sites and genes likely to be functional for CRP.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。