Contributions to the Dynamic Regime Behavior of a Bionic Leg Prosthesis.

阅读:9
作者:Drăgoi Marius-Valentin, Hadăr Anton, Goga Nicolae, Baciu Florin, Ștefan Amado, Grigore Lucian Ștefăniță, Gorgoteanu Damian, Molder Cristian, Oncioiu Ionica
The purpose of prosthetic devices is to reproduce the angular-torque profile of a healthy human during locomotion. A lightweight and energy-efficient joint is capable of decreasing the peak actuator power and/or power consumption per gait cycle, while adequately meeting profile-matching constraints. The aim of this study was to highlight the dynamic characteristics of a bionic leg with electric actuators with rotational movement. Three-dimensional (3D)-printing technology was used to create the leg, and servomotors were used for the joints. A stepper motor was used for horizontal movement. For better numerical simulation of the printed model, three mechanical tests were carried out (tension, compression, and bending), based on which the main mechanical characteristics necessary for the numerical simulation were obtained. For the experimental model made, the dynamic stresses could be determined, which highlights the fact that, under the conditions given for the experimental model, the prosthesis resists.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。