Glucocorticoid receptor dysregulation underlies 5-HT2AR-dependent synaptic and behavioral deficits in a mouse neurodevelopmental disorder model

在小鼠神经发育障碍模型中,糖皮质激素受体失调是5-HT2AR依赖性突触和行为缺陷的根本原因。

阅读:1
作者:Justin M Saunders ,Carolina Muguruza ,Salvador Sierra ,José L Moreno ,Luis F Callado ,J Javier Meana ,Patrick M Beardsley ,Javier González-Maeso

Abstract

Prenatal environmental insults increase the risk of neurodevelopmental psychiatric conditions in the offspring. Structural modifications of dendritic spines are central to brain development and plasticity. Using maternal immune activation (MIA) as a rodent model of prenatal environmental insult, previous results have reported dendritic structural deficits in the frontal cortex. However, very little is known about the molecular mechanism underlying MIA-induced synaptic structural alterations in the offspring. Using prenatal (E12.5) injection with polyinosinic-polycytidylic acid potassium salt as a mouse MIA model, we show here that upregulation of the serotonin 5-HT2A receptor (5-HT2AR) is at least in part responsible for some of the effects of prenatal insults on frontal cortex dendritic spine structure and sensorimotor gating processes. Mechanistically, we report that this upregulation of frontal cortex 5-HT2AR expression is associated with MIA-induced reduction of nuclear translocation of the glucocorticoid receptor (GR) and, consequently, a decrease in the enrichment of GR at the 5-HT2AR promoter. The translational significance of these preclinical findings is supported by data in postmortem human brain samples suggesting dysregulation of GR translocation in frontal cortex of schizophrenia subjects. We also found that repeated corticosterone administration augmented frontal cortex 5-HT2AR expression and reduced GR binding to the 5-HT2AR promoter. However, virally (adeno-associated virus) mediated augmentation of GR function reduced frontal cortex 5-HT2AR expression and improved sensorimotor gating processes via 5-HT2AR. Together, these data support a negative regulatory relationship between GR signaling and 5-HT2AR expression in the mouse frontal cortex that may carry implications for the pathophysiology underlying 5-HT2AR dysregulation in neurodevelopmental psychiatric disorders. Keywords: G protein–coupled receptor; dendritic spines; glucocorticoid receptor; maternal immune activation; neurodevelopmental psychiatric conditions; schizophrenia; serotonin 5-HT(2A) receptor.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。