In the human body, phosphate groups play important roles in signaling and the biological functions of proteins and peptides. Despite the importance of phosphate groups, polymer surfaces have not been directly grafted with phosphate groups by chemical reactions because the usual organic solvents used to graft phosphate groups can dissolve or swell polymers. We focused this study on grafting phosphate groups onto a poly(ethylene-co-acrylic acid) (PEAA) surface in an aqueous solution. O-phospho L-serine and O-phosphoethanolamine were grafted on PEAA surfaces to introduce phosphate groups by activating carboxylic acid groups of PEAA using N-hydroxysuccinimide (NHS) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) in an aqueous environment. X-ray photoelectron spectroscopy (XPS) was used to elucidate the process by which surface grafting occurs and the process that the phosphate group is cleaved into a phosphate ion and a hydrolyzed molecule at high pH. It was found that under appropriate reaction conditions the phosphate groups could be successfully grafted on the polymer surfaces. The phosphate-grafted polymer surfaces showed lower water contact angles than the initial polymer surfaces likely due to their highly mobile and hydrophilic phosphate side groups. This work demonstrates a technique to successfully graft phosphate groups onto organic polymer surfaces in a biocompatible aqueous environment, which may open new avenues to functionalizing synthetic polymeric and natural macromolecule derived biomaterials.
Surface-grafting of phosphates onto a polymer for potential biomimetic functionalization of biomaterials.
阅读:3
作者:Ko Young Gun, Ma Peter X
| 期刊: | Journal of Colloid and Interface Science | 影响因子: | 9.700 |
| 时间: | 2009 | 起止号: | 2009 Feb 1; 330(1):77-83 |
| doi: | 10.1016/j.jcis.2008.10.015 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
