Ranked set sampling (RSS) is used as a powerful data collection technique for situations where measuring the study variable requires a costly and/or tedious process while the sampling units can be ranked easily (e.g. osteoporosis research). In this paper, we develop ridge and Liu-type shrinkage estimators under RSS data from multiple observers to handle the collinearity problem in estimating coefficients of linear regression, stochastic restricted regression and logistic regression. Through extensive numerical studies, we show that shrinkage methods with the multi-observer RSS result in more efficient coefficient estimates. The developed methods are finally applied to bone mineral data for analysis of bone disorder status of women aged 50 and older.
Multiple observers ranked set samples for shrinkage estimators.
阅读:3
作者:Pearce Andrew David, Hatefi Armin
| 期刊: | J Appl Stat | 影响因子: | 0.000 |
| 时间: | 2024 | 起止号: | 2024 Feb 16; 51(14):2779-2811 |
| doi: | 10.1080/02664763.2024.2317312 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
