Potato native and wound periderms are differently affected by down-regulation of FHT, a suberin feruloyl transferase.

阅读:3
作者:Jin Liqing, Cai Qing, Huang Wenlin, Dastmalchi Keyvan, Rigau Joan, Molinas Marisa, Figueras Mercè, Serra Olga, Stark Ruth E
Potato native and wound healing periderms contain an external multilayered phellem tissue (potato skin) consisting of dead cells whose cell walls are impregnated with suberin polymers. The phellem provides physical and chemical barriers to tuber dehydration, heat transfer, and pathogenic infection. Previous RNAi-mediated gene silencing studies in native periderm have demonstrated a role for a feruloyl transferase (FHT) in suberin biosynthesis and revealed how its down-regulation affects both chemical composition and physiology. To complement these prior analyses and to investigate the impact of FHT deficiency in wound periderms, a bottom-up methodology has been used to analyze soluble tissue extracts and solid polymers concurrently. Multivariate statistical analysis of LC-MS and GC-MS data, augmented by solid-state NMR and thioacidolysis, yields two types of new insights: the chemical compounds responsible for contrasting metabolic profiles of native and wound periderms, and the impact of FHT deficiency in each of these plant tissues. In the current report, we confirm a role for FHT in developing wound periderm and highlight its distinctive features as compared to the corresponding native potato periderm.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。