Boxing Punch Detection with Single Static Camera.

阅读:4
作者:Stefański Piotr, Kozak Jan, Jach Tomasz
Computer vision in sports analytics is gaining in popularity. Monitoring players' performance using cameras is more flexible and does not interfere with player equipment compared to systems using sensors. This provides a wide set of opportunities for computer vision systems that help coaches, reporters, and audiences. This paper provides an introduction to the problem of measuring boxers' performance, with a comprehensive survey of approaches in current science. The main goal of the paper is to provide a system to automatically detect punches in Olympic boxing using a single static camera. The authors use Euclidean distance to measure the distance between boxers and convolutional neural networks to classify footage frames. In order to improve classification performance, we provide and test three approaches to manipulating the images prior to fitting the classifier. The proposed solution achieves 95% balanced accuracy, 49% F1 score for frames with punches, and 97% for frames without punches. Finally, we present a working system for analyses of a boxing scene that marks boxers and labelled frames with detected clashes and punches.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。