In the human pathogen Staphylococcus aureus, the two-component regulatory system SaeRS contributes to the expression of numerous virulence factors essential for pathogenesis. The kinase and phosphatase activities of SaeS are stimulated by several host and physiological signals, resulting in increased phosphorylation of the transcription factor SaeR and increased transcriptional activity of regulated promoters. It was recently demonstrated that the accumulation of fatty acids negatively impacts SaeS activity, decreasing titers of phosphorylated SaeP and transcriptional output. Triclosan is an effective antimicrobial that has been integrated as an ingredient in a variety of healthcare and consumer products. The chlorinated compound is recalcitrant to natural or biological transformations, resulting in environmental accumulation. At low concentrations, triclosan is a bacteriostatic inhibitor of enoyl-acetyl carrier protein reductase (FabI) of the type II fatty acid synthesis system (FASII), which is necessary for the elongation and synthesis of fatty acids. Herein, we demonstrate that the treatment of S. aureus with a growth-permissive concentration of triclosan alters the titers of cell-associated fatty acids and thereby functions as an activator of SaeRS. Triclosan-dependent activation of SaeRS subsequently resulted in increased transcription and expression of genes that code for virulence factors. These phenotypes are chemically reversed by the exogenous addition of oleic acid, which inactivates SaeRS, and genetically reversed by crippling the FakAB fatty acid kinase system, which generates phosphorylated fatty acids for incorporation into phospholipids. These findings present implications for the widespread use of triclosan as an antimicrobial agent in household products and its role as a persistent environmental pollutant.
Treatment of Staphylococcus aureus with environmentally relevant concentrations of triclosan activates SaeRS-dependent virulence factor expression.
阅读:25
作者:Boyd Jeffrey M, Price Erin E, Roman Rodriguez Franklin, Burchat Natalie, Norambuena Javiera, DuMont Ashley L, Torres Victor J, Sampath Harini
| 期刊: | Antimicrobial Agents and Chemotherapy | 影响因子: | 4.500 |
| 时间: | 2025 | 起止号: | 2025 Aug 6; 69(8):e0172824 |
| doi: | 10.1128/aac.01728-24 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
