The recent discovery of novel charge density wave (CDW) and pair density wave (PDW) in kagomé lattice superconductors AV(3)Sb(5) (Aâ=âK, Rb, Cs) hints at unexpected time-reversal symmetry breaking correlated and topological states whose physical origin and broader implications are not understood. Here, we make conceptual advances toward a mechanism behind the striking observations and new predictions for novel macroscopic phase coherent quantum states. We show that the metallic CDW state with circulating loop currents is a doped orbital Chern insulator near van Hove filling. The emergent Chern Fermi pockets (CFPs) carry concentrated Berry curvature and orbital magnetic moment. We find that the pairing of electrons on the CFPs leads to a superconducting state with an emergent vortex-antivortex lattice and the formation of a complex triple-Q PDW. A plethora of correlated and topological states emerge, including a never-before-encountered chiral topological PDW superconductor, a loop-current pseudogap phase, and vestigial charge-4e and charge-6e superconductivity in staged melting of the vortex-antivortex lattice and hexatic liquid crystal. Our findings reveal previously unknown nature of the superconducting state of a current-carrying Chern metal, with broad implications for correlated and topological materials.
Chern Fermi pocket, topological pair density wave, and charge-4e and charge-6e superconductivity in kagomé superconductors.
阅读:7
作者:Zhou Sen, Wang Ziqiang
| 期刊: | Nature Communications | 影响因子: | 15.700 |
| 时间: | 2022 | 起止号: | 2022 Nov 26; 13(1):7288 |
| doi: | 10.1038/s41467-022-34832-2 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
