Chern Fermi pocket, topological pair density wave, and charge-4e and charge-6e superconductivity in kagomé superconductors.

阅读:3
作者:Zhou Sen, Wang Ziqiang
The recent discovery of novel charge density wave (CDW) and pair density wave (PDW) in kagomé lattice superconductors AV(3)Sb(5) (A = K, Rb, Cs) hints at unexpected time-reversal symmetry breaking correlated and topological states whose physical origin and broader implications are not understood. Here, we make conceptual advances toward a mechanism behind the striking observations and new predictions for novel macroscopic phase coherent quantum states. We show that the metallic CDW state with circulating loop currents is a doped orbital Chern insulator near van Hove filling. The emergent Chern Fermi pockets (CFPs) carry concentrated Berry curvature and orbital magnetic moment. We find that the pairing of electrons on the CFPs leads to a superconducting state with an emergent vortex-antivortex lattice and the formation of a complex triple-Q PDW. A plethora of correlated and topological states emerge, including a never-before-encountered chiral topological PDW superconductor, a loop-current pseudogap phase, and vestigial charge-4e and charge-6e superconductivity in staged melting of the vortex-antivortex lattice and hexatic liquid crystal. Our findings reveal previously unknown nature of the superconducting state of a current-carrying Chern metal, with broad implications for correlated and topological materials.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。