BACKGROUND: Phenotypically, aortic valve interstitial cells are dynamic myofibroblasts, appearing contractile and activated in times of development, disease, and remodeling. The precise mechanism of phenotypic modulation is unclear, but it is speculated that both biomechanical and biochemical factors are influential. Therefore, we hypothesized that isolated and combined treatments of cyclic tension and transforming growth factor-beta1 would alter the phenotype and subsequent collagen biosynthesis of aortic valve interstitial cells in situ. METHODS AND RESULTS: Porcine aortic valve leaflets received 7- and 14-day treatments of 15% cyclic stretch (Tension); 0.5 ng/ml transforming growth factor-beta1 (TGF); 15% cyclic stretch and 0.5 ng/ml transforming growth factor-beta1 (Tension+TGF); or neither mechanical nor cytokine stimuli (Null). Tissues were homogenized and assayed for aortic valve interstitial cell phenotype (smooth muscle alpha-actin) and collagen biosynthesis (via heat shock protein 47, which was further verified with type I collagen C-terminal propeptide). At both 7 and 14 days, smooth muscle alpha-actin, heat shock protein 47, and type I collagen C-terminal propeptide quantities were significantly greater (P<.001) in the Tension+TGF group than in all other groups. Additionally, Tension alone appeared to maintain smooth muscle alpha-actin and heat shock protein 47 levels that were measured on Day 0, while TGF alone elicited an increase in smooth muscle alpha-actin and heat shock protein 47 compared to Day 0 levels. Null treatment revealed diminished proteins at both time points. CONCLUSIONS: Elevated transforming growth factor-beta1 levels, in the presence of cyclic mechanical tension, resulted in synergistic increases in contractile and biosynthetic proteins in aortic valve interstitial cells. Since cyclic mechanical stimuli can never be relieved in vivo, the presence of transforming growth factor-beta1 (possibly from infiltrating macrophages) may result in overly biosynthetic aortic valve interstitial cells, leading to altered extracellular matrix architecture, compromised valve function, and, ultimately, degenerative valvular disease.
Synergistic effects of cyclic tension and transforming growth factor-beta1 on the aortic valve myofibroblast.
阅读:4
作者:Merryman W David, Lukoff Howard D, Long Rebecca A, Engelmayr George C Jr, Hopkins Richard A, Sacks Michael S
| 期刊: | Cardiovascular Pathology | 影响因子: | 1.900 |
| 时间: | 2007 | 起止号: | 2007 Sep-Oct;16(5):268-76 |
| doi: | 10.1016/j.carpath.2007.03.006 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
