Ancient antagonism between CELF and RBFOX families tunes mRNA splicing outcomes

CELF 和 RBFOX 家族之间古老的拮抗作用调节 mRNA 剪接结果

阅读:1
作者:Matthew R Gazzara ,Michael J Mallory ,Renat Roytenberg ,John P Lindberg ,Anupama Jha ,Kristen W Lynch ,Yoseph Barash

Abstract

Over 95% of human multi-exon genes undergo alternative splicing, a process important in normal development and often dysregulated in disease. We sought to analyze the global splicing regulatory network of CELF2 in human T cells, a well-studied splicing regulator critical to T cell development and function. By integrating high-throughput sequencing data for binding and splicing quantification with sequence features and probabilistic splicing code models, we find evidence of splicing antagonism between CELF2 and the RBFOX family of splicing factors. We validate this functional antagonism through knockdown and overexpression experiments in human cells and find CELF2 represses RBFOX2 mRNA and protein levels. Because both families of proteins have been implicated in the development and maintenance of neuronal, muscle, and heart tissues, we analyzed publicly available data in these systems. Our analysis suggests global, antagonistic coregulation of splicing by the CELF and RBFOX proteins in mouse muscle and heart in several physiologically relevant targets, including proteins involved in calcium signaling and members of the MEF2 family of transcription factors. Importantly, a number of these coregulated events are aberrantly spliced in mouse models and human patients with diseases that affect these tissues, including heart failure, diabetes, or myotonic dystrophy. Finally, analysis of exons regulated by ancient CELF family homologs in chicken, Drosophila, and Caenorhabditis elegans suggests this antagonism is conserved throughout evolution.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。