Most developed models for solving problems in epidemiology use deterministic approach. To cover the lack of spatial sense in the method, one uses statistical modeling, reaction-diffusion in continuous medium, or multi-patch model to depict epidemic activities in several connected locations. Here, we show that an epidemic model that is set as an organized system on networks can yield Turing patterns and other interesting behaviors that are sensitive to the initial conditions. The formed patterns can be used to determine the epidemic arrival time, its first peak occurrence and the peak duration. These epidemic quantities are beneficial to identify contribution of a disease source node to the others. Using a real structure network, the system also exhibits a comparable disease spread pattern of Diarrhea in Jakarta.
Turing Patterns of Non-linear S-I Model on Random and Real-Structure Networks with Diarrhea Data.
阅读:3
作者:Putra Prama Setia, Susanto Hadi, Nuraini Nuning
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2019 | 起止号: | 2019 Jun 20; 9(1):8892 |
| doi: | 10.1038/s41598-019-45069-3 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
