Sunlight inhibits growth and induces markers of programmed cell death in Plasmodium falciparum in vitro.

阅读:3
作者:Engelbrecht Dewaldt, Coetzer Thérèsa Louise
BACKGROUND: Plasmodium falciparum is responsible for the majority of global malaria deaths. During the pathogenic blood stages of infection, a rapid increase in parasitaemia threatens the survival of the host before transmission of slow-maturing sexual parasites to the mosquito vector to continue the life cycle. Programmed cell death (PCD) may provide the parasite with the means to control its burden on the host and thereby ensure its own survival. Various environmental stress factors encountered during malaria may induce PCD in P. falciparum. This study is the first to characterize parasite cell death in response to natural sunlight. METHODS: The 3D7 strain of P. falciparum was cultured in vitro in donor erythrocytes. Synchronized and mixed-stage parasitized cultures were exposed to sunlight for 1 h and compared to cultures maintained in the dark, 24 h later. Mixed-stage parasites were also subjected to a second one-hour exposure at 24 h and assessed at 48 h. Parasitaemia was measured daily by flow cytometry. Biochemical markers of cell death were assessed, including DNA fragmentation, mitochondrial membrane polarization and phosphatidylserine externalization. RESULTS: Sunlight inhibited P. falciparum growth in vitro. Late-stage parasites were more severely affected than early stages. However, some late-stage parasites survived exposure to sunlight to form new rings 24 h later, as would be expected during PCD whereby only a portion of the population dies. DNA fragmentation was observed at 24 and 48 h and preceded mitochondrial hyperpolarization in mixed-stage parasites at 48 h. Mitochondrial hyperpolarization likely resulted from increased oxidative stress. Although data suggested increased phosphatidylserine externalization in mixed-stage parasites, results were not statistically significant. CONCLUSION: The combination of biochemical markers and the survival of some parasites, despite exposure to a lethal stimulus, support the occurrence of PCD in P. falciparum.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。