Informative prior on structural equation modelling with non-homogenous error structure.

阅读:9
作者:Olalude Oladapo A, Muse Bernard O, Alaba Oluwayemisi O
Introduction: This study investigates the impact of informative prior on Bayesian structural equation model (BSEM) with heteroscedastic error structure. A major drawback of homogeneous error structure is that, in most studies the underlying assumption of equal variance across observation is often unrealistic, hence the need to consider the non-homogenous error structure. Methods: Updating appropriate informative prior, four different forms of heteroscedastic error structures were considered at sample sizes 50, 100, 200 and 500. Results: The results show that both posterior predictive probability (PPP) and log likelihood are influenced by the sample size and the prior information, hence the model with the linear form of error structure is the best. Conclusions: The study has been able to address sufficiently the problem of heteroscedasticity of known form using four different heteroscedastic conditions, the linear form outperformed other forms of heteroscedastic error structure thus can accommodate any form of data that violates the homogenous variance assumption by updating appropriate informative prior. Thus, this approach provides an alternative approach to the existing classical method which depends solely on the sample information.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。