The early detection of brain tumors is critical for improving clinical outcomes and patient survival. However, medical imaging datasets frequently exhibit class imbalance, posing significant challenges for traditional classification algorithms that rely on balanced data distributions. To address this issue, this study employs a One-Class Support Vector Machine (OCSVM) trained exclusively on features extracted from healthy brain MRI images, using both deep learning architectures-such as DenseNet121, VGG16, MobileNetV2, InceptionV3, and ResNet50-and classical feature extraction techniques. Experimental results demonstrate that combining Convolutional Neural Network (CNN)-based feature extraction with OCSVM significantly improves anomaly detection performance compared with simpler handcrafted approaches. DenseNet121 achieved an accuracy of 94.83%, a precision of 99.23%, and a sensitivity of 89.97%, while VGG16 reached an accuracy of 95.33%, a precision of 98.87%, and a sensitivity of 91.32%. MobileNetV2 showed a competitive trade-off between accuracy (92.83%) and computational efficiency, making it suitable for resource-constrained environments. Additionally, the pure CNN model-trained directly for classification without OCSVM-outperformed hybrid methods with an accuracy of 97.83%, highlighting the effectiveness of deep convolutional networks in directly learning discriminative features from MRI data. This approach enables reliable detection of brain tumor anomalies without requiring labeled pathological data, offering a promising solution for clinical contexts where abnormal samples are scarce. Future research will focus on reducing inference time, expanding and diversifying training datasets, and incorporating explainability tools to support clinical integration and trust in AI-based diagnostics.
Optimizing Tumor Detection in Brain MRI with One-Class SVM and Convolutional Neural Network-Based Feature Extraction.
阅读:13
作者:Mjahad Azeddine, Rosado-Muñoz Alfredo
| 期刊: | Journal of Imaging | 影响因子: | 3.300 |
| 时间: | 2025 | 起止号: | 2025 Jun 21; 11(7):207 |
| doi: | 10.3390/jimaging11070207 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
