This study explored the effectiveness of secondary metabolites of referred traditional Ayurvedic plants in treating fungal infections, particularly targeting Candida auris. Recognized as a global health threat, this fungus is notorious for its resistance to several antifungal treatments. The inhibition of lanosterol 14α-demethylase causes the depletion of ergosterol, ultimately resulting in the inhibition of fungal cell growth. A total of 469 metabolites, including alkaloids, flavonoids, and tannins from Ayurvedic plants, were screened against CYP51 (PDB ID: 4UYL) using molecular docking. Key active site residues, namely HIS461, CYS463, and TYR122, were targeted to inhibit the ergosterol synthesis, with VNI employed to benchmark the findings. Shortlisted metabolites underwent physicochemical analysis, ADMET analyses, and the principles of medicinal chemistry, which were confirmed through pharmacokinetic simulations. Further, this study investigated the molecular dynamics (MD) of co-crystalized VNI, trans-p-coumaric acid, and MCPHB [(r)-n-(1'-methoxycarbonyl-2'-phenylethyl)-4-hydroxybenzamide] to evaluate RMSD, RMSF, Rg, SASA, cross-correlation of residue motions, PCA, and free energy decomposition. The top compounds demonstrated favorable drug-like criteria. They exhibited good absorption potential with high gastrointestinal uptake. Distribution and metabolism were manageable with low risks of drug-drug interactions. Excretion profiles indicated proper clearance, and toxicity assessments showed low potential for cardiovascular issues. The results showed stable interactions for trans-p-coumaric acid and MCPHB, suggesting that all the ligands maintain stable binding interactions with the protein, which preserves structural integrity across all systems. This comprehensive approach suggests that these natural metabolites from Ayurvedic medicine could potentially serve as primary agents against fungal diseases, pending further validation through controlled in vitro and in vivo clinical trials.
Computational analysis of Ayurvedic metabolites for potential treatment of drug-resistant Candida auris.
阅读:3
作者:Shah Mohibullah, Zia Mahnoor, Ahmad Iqra, Umer Khan Muhammad, Ejaz Hasan, Alam Maqsood, Aziz Shahid, Nishan Umar, Dib Hanna, Ullah Riaz, Ojha Suvash Chandra
| 期刊: | Frontiers in Cellular and Infection Microbiology | 影响因子: | 4.800 |
| 时间: | 2025 | 起止号: | 2025 Mar 13; 15:1537872 |
| doi: | 10.3389/fcimb.2025.1537872 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
