Male Mice Lacking NLRX1 Are Partially Protected From High-Fat Diet-Induced Hyperglycemia.

阅读:4
作者:Costford Sheila R, Tattoli Ivan, Duan Francis T, Volchuk Allen, Klip Amira, Philpott Dana J, Woo Minna, Girardin Stephen E
Nod-like receptor (NLR)X1 is an NLR family protein that localizes to the mitochondrial matrix and modulates reactive oxygen species production, possibly by directly interacting with the electron transport chain. Recent work demonstrated that cells lacking NLRX1 have higher oxygen consumption but lower levels of adenosine triphosphate, suggesting that NLRX1 might prevent uncoupling of oxidative phosphorylation. We therefore hypothesized that NLRX1 might regulate whole-body energy metabolism through its effect on mitochondria. Male NLRX1 whole-body knockout (KO) mice and wild-type (WT) C57BL/6N controls were fed a low-fat or a high-fat (HF) diet for 16 weeks from weaning. Contrary to this hypothesis, there were no differences in body weight, adiposity, energy intake, or energy expenditure between HF-fed KO and WT mice, but instead HF KO mice were partially protected from the development of diet-induced hyperglycemia. Additionally, HF KO mice did not present with hyperinsulinemia during the glucose tolerance test, as did HF WT mice. There were no genotype differences in insulin tolerance, which led us to consider a pancreatic phenotype. Histology revealed that KO mice were protected from HF-induced pancreatic lipid accumulation, suggesting a potential role for NLRX1 in pancreatic dysfunction during the development diet-induced type 2 diabetes mellitus. Hence, NLRX1 depletion partially protects against postabsorptive hyperglycemia in obesity that may be linked to the prevention of pancreatic lipid accumulation. Although the actual mechanisms restoring glucose and insulin dynamics remain unknown, NLRX1 emerges as a potentially interesting target to inhibit for the prevention of type 2 diabetes mellitus.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。