AIMS: To evaluate the efficacy of a machine learning approach in developing classification and regression models for antifungal activity against Candida albicans. MATERIALS & METHODS: Utilized RF, SVM, and LightGBM algorithms to screen the eMolecules® library. Selected 17 virtual hits for in vitro assays. RESULTS: Eleven compounds showed activity against C. albicans. Compounds 1 and 17 inhibited C. albicans at 0.51âµM and 0.071âµM, respectively. CONCLUSIONS: The RF model proved effective for virtual screening, demonstrating the success of the physicochemical classification and regression model in identifying new antifungal molecules against C. albicans.
Employing machine learning for identifying antifungal compounds against Candida albicans.
阅读:4
作者:de Souza Dienny Rodrigues, Silva LÃvia Do Carmo, E Silva Kleber Santiago Freitas, de Jesus Fabricio Silva, de Oliveira Amanda Alves, Neves Bruno Junior, Pereira Maristela
| 期刊: | Future Microbiology | 影响因子: | 2.400 |
| 时间: | 2025 | 起止号: | 2025 Aug;20(11):743-753 |
| doi: | 10.1080/17460913.2025.2525717 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
