Employing machine learning for identifying antifungal compounds against Candida albicans.

阅读:4
作者:de Souza Dienny Rodrigues, Silva Lívia Do Carmo, E Silva Kleber Santiago Freitas, de Jesus Fabricio Silva, de Oliveira Amanda Alves, Neves Bruno Junior, Pereira Maristela
AIMS: To evaluate the efficacy of a machine learning approach in developing classification and regression models for antifungal activity against Candida albicans. MATERIALS & METHODS: Utilized RF, SVM, and LightGBM algorithms to screen the eMolecules® library. Selected 17 virtual hits for in vitro assays. RESULTS: Eleven compounds showed activity against C. albicans. Compounds 1 and 17 inhibited C. albicans at 0.51 µM and 0.071 µM, respectively. CONCLUSIONS: The RF model proved effective for virtual screening, demonstrating the success of the physicochemical classification and regression model in identifying new antifungal molecules against C. albicans.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。