Peer-to-Peer (P2P) energy trading has gained much attention recently due to the advanced development of distributed energy resources. P2P enables prosumers to trade their surplus electricity and allows consumers to purchase affordable and locally produced renewable energy. Therefore, it is significant to develop solutions that are able to forecast energy consumption and generation toward better power management, thereby making renewable energy more accessible and empowering prosumers to make an informed decision on their energy management. In this paper, several models for forecasting short-term renewable energy consumption and generating are developed and discussed. Real-time energy datasets were collected from smart meters that were installed in residential premises in Western Australia. These datasets are collected from August 2018 to Apr 2019 at fine time resolution down to 5 s and comprise energy import from the grid, energy export to the grid, energy generation from installed rooftop PV, energy consumption in households, and outdoor temperature. Several models for forecasting short-term renewable energy consumption and generating are developed and discussed. The empirical results demonstrate the superiority of the optimised deep learning-based Long Term Short Memory (LSTM) model in forecasting both energy consumption and generation and outperforms the baseline model as well as the alternative classical and machine learning methods by a substantial margin.
Short-term renewable energy consumption and generation forecasting: A case study of Western Australia.
阅读:3
作者:Abu-Salih Bilal, Wongthongtham Pornpit, Morrison Greg, Coutinho Kevin, Al-Okaily Manaf, Huneiti Ammar
| 期刊: | Heliyon | 影响因子: | 3.600 |
| 时间: | 2022 | 起止号: | 2022 Mar 22; 8(3):e09152 |
| doi: | 10.1016/j.heliyon.2022.e09152 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
