Photosensitized biological processes, as applied in photodynamic therapy, are based on light-triggered generation of molecular singlet oxygen by a membrane-residing sensitizer. Most of the sensitizers currently used are hydrophobic or amphiphilic porphyrins and their analogs. The possible activity of the short-lived singlet oxygen is limited to the time it is diffusing in the membrane, before it emerges into the aqueous environment. In this paper we demonstrate the enhancement of the photosensitization process that is obtained by newly synthesized protoporphyrin derivatives, which insert their tetrapyrrole chromophore deeper into the lipid bilayer of liposomes. The insertion was measured by fluorescence quenching by iodide and the photosensitization efficiency was measured with 9,10-dimethylanthracene, a fluorescent chemical target for singlet oxygen. We also show that when the bilayer undergoes a melting phase transition, or when it is fluidized by benzyl alcohol, the sensitization efficiency decreases because of the enhanced diffusion of singlet oxygen. The addition of cholesterol or of dimyristoyl phosphatydilcholine to the bilayer moves the porphyrin deeper into the bilayer; however, the ensuing effect on the sensitization efficiency is different in these two cases. These results could possibly define an additional criterion for the choice and design of hydrophobic, membrane-bound photosensitizers.
The depth of porphyrin in a membrane and the membrane's physical properties affect the photosensitizing efficiency.
阅读:4
作者:Lavi Adina, Weitman Hana, Holmes Robert T, Smith Kevin M, Ehrenberg Benjamin
| 期刊: | Biophysical Journal | 影响因子: | 3.100 |
| 时间: | 2002 | 起止号: | 2002 Apr;82(4):2101-10 |
| doi: | 10.1016/S0006-3495(02)75557-4 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
