Glutamate receptors mediate neuronal intercommunication in the central nervous system by coupling extracellular neurotransmitter-receptor interactions to ion channel conductivity. To gain insight into structural and dynamical factors that underlie this coupling, solution NMR experiments were performed on the bilobed ligand-binding core of glutamate receptor 2 in complexes with a set of willardiine partial agonists. These agonists are valuable for studying structure-function relationships because their 5-position substituent size is correlated with ligand efficacy and extent of receptor desensitization, whereas the substituent electronegativity is correlated with ligand potency. NMR results show that the protein backbone amide chemical shift deviations correlate mainly with efficacy and extent of desensitization. Pronounced deviations occur at specific residues in the ligand-binding site and in the two helical segments that join the lobes by a disulfide bond. Experiments detecting conformational exchange show that micro- to millisecond timescale motions also occur near the disulfide bond and vary largely with efficacy and extent of desensitization. These results thus identify regions displaying structural and dynamical dissimilarity arising from differences in ligand-protein interactions and lobe closure that may play a critical role in receptor response. Furthermore, measures of line broadening and conformational exchange for a portion of the ligand-binding site correlate with ligand EC(50) data. These results do not have any correlate in the currently available crystal structures and thus provide a novel view of ligand-binding events that may be associated with agonist potency differences.
NMR spectroscopy of the ligand-binding core of ionotropic glutamate receptor 2 bound to 5-substituted willardiine partial agonists.
阅读:4
作者:Fenwick Michael K, Oswald Robert E
| 期刊: | Journal of Molecular Biology | 影响因子: | 4.500 |
| 时间: | 2008 | 起止号: | 2008 May 2; 378(3):673-85 |
| doi: | 10.1016/j.jmb.2008.03.012 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
