Magnetogenetic cell activation using endogenous ferritin

利用内源性铁蛋白进行磁致细胞活化

阅读:5
作者:Lisa Pomeranz, Rosemary Li, Xiaofei Yu, Leah Kelly, Gholamreza Hassanzadeh, Henrik Molina, Daniel Gross, Matthew Brier, George Vaisey, Putianqi Wang, Maria Jimenez-Gonzalez, Adolfo Garcia-Ocana, Jonathan Dordick, Jeffrey Friedman, Sarah Stanley

Abstract

The ability to precisely control the activity of defined cell populations enables studies of their physiological roles and may provide therapeutic applications. While prior studies have shown that magnetic activation of ferritin-tagged ion channels allows cell-specific modulation of cellular activity, the large size of the constructs made the use of adeno-associated virus, AAV, the vector of choice for gene therapy, impractical. In addition, simple means for generating magnetic fields of sufficient strength have been lacking. Toward these ends, we first generated a novel anti-ferritin nanobody that when fused to transient receptor potential cation channel subfamily V member 1, TRPV1, enables direct binding of the channel to endogenous ferritin in mouse and human cells. This smaller construct can be delivered in a single AAV and we validated that it robustly enables magnetically induced cell activation in vitro. In parallel, we developed a simple benchtop electromagnet capable of gating the nanobody-tagged channel in vivo. Finally, we showed that delivering these new constructs by AAV to pancreatic beta cells in combination with the benchtop magnetic field delivery stimulates glucose-stimulated insulin release to improve glucose tolerance in mice in vivo. Together, the novel anti-ferritin nanobody, nanobody-TRPV1 construct and new hardware advance the utility of magnetogenetics in animals and potentially humans.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。