Classifying Driving Fatigue by Using EEG Signals.

阅读:12
作者:Zeng Changqing, Mu Zhendong, Wang Qingjun
Fatigue driving is one of the main reasons for the occurrence of traffic accidents. Brain-computer interface, as a human-computer interaction method based on EEG signals, can communicate with the outside world and move freely through brain signals without relying on the peripheral neuromuscular system. In this paper, a simulation driving platform composed of driving simulation equipment and driving simulation software is used to simulate the real driving process. The EEG signals of the subjects are collected through simulated driving, and the EEG of five subjects is selected as the training sample, and the remaining one is the subject. As a test sample, perform feature extraction and classification experiments, select any set of normal signals and fatigue signals recorded in the driving fatigue experiment for data analysis, and then study the classification of driver fatigue levels. Experiments have proved that the PSO-H-ELM algorithm has only about 4% advantage compared with the average accuracy of the KNN algorithm and the SVM algorithm. The gap is not as big as expected, but as a new algorithm, it is applied to the detection of fatigue EEG. The two traditional algorithms are indeed more suitable. It shows that the driver fatigue level can be judged by detecting EEG, which will provide a basis for the development of on-board, real-time driving fatigue alarm devices. It will lay the foundation for traffic management departments to intervene in driving fatigue reasonably and provide a reliable basis for minimizing traffic accidents.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。