BACKGROUND: Providing a noninvasive, rapid, and cost-effective approach to diagnose of myocardial infarction (MI) is essential in the early stages of electrocardiogram (ECG) signaling. In this article, we proposed the new optimization method for support vector machine (SVM) classifier to MI classification. METHODS: After preprocessing ECG signal and noise removal, three features such as Q-wave integral, T-wave integral, and QRS-complex integral have been extracted in this study. After that, different statistical tests have evaluated the matrix of these features. To more accurately detect and classify the MI disease, optimizing the SVM classification parameters using the grasshopper optimization algorithm (GOA) was first used in this study (that called SVM-GOA). RESULTS: After applying the GOA on the SVM classifier for all three kernels, the final results of MI detection for sensitivity, specificity, and accuracy were 100% ± 0%, 100% ± 0%, and 100% ± 0%, respectively. The final results of different MI types' classification after applying the GOA on SVM for polynomial kernel were obtained 100% ± 0%, 97.37% ± 0%, and 94.2% ± 0.2% for sensitivity and specificity and accuracy, respectively. However, the results of both linear and RBF kernels that were used for the SVM classifier method have also shown a significant increase after using GOA. CONCLUSION: This article's results show the highly desirable effect of applying a GOA to optimize different kernel parameters used in the SVM classifier for accurate detection and classification of MI. The proposed algorithm's final results show that the proposed system has a relatively higher performance than other previous studies.
Detection and Classification of Myocardial Infarction with Support Vector Machine Classifier Using Grasshopper Optimization Algorithm.
阅读:5
作者:Safdarian Naser, Nezhad Shadi Yoosefian Dezfuli, Dabanloo Nader Jafarnia
| 期刊: | Journal of Medical Signals & Sensors | 影响因子: | 1.100 |
| 时间: | 2021 | 起止号: | 2021 Jul 21; 11(3):185-193 |
| doi: | 10.4103/jmss.JMSS_24_20 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
