Cluster analysis is widely used in fields such as economics, management and engineering. The distance and correlation are two of the most important and often used mathematics- and statistics-based similarity measures in cluster analysis. Many studies have been conducted to improve the distance and similarity in high-dimensional and overlapped data. However, these studies do not consider the degree of influence (weight) of different properties on different types of data. In practice, the weight of each property is different, so these methods cannot accurately analyze real data. First, this study proposes a new distance measure that can reflect the weight, so that non-spherical overlapping data in the Euclidean space can be projected onto a weighted Euclidean space to form non-overlapping data. Second, the Fuzzy-ANP method is used to determine the weight of each factor. Then, by applying the Fuzzy-ANP-Weighted-Distance-QC (FAWQC) method to weighted random data, the effectiveness of the method is verified. Finally, the method is applied to the 2015 Economics-Energy-Environment (3E) data for 19 provinces in China for a comparative study of the classification of the system structure and evaluation of the low-carbon economy development level. The experiment results show that the FAWQC method can more accurately analyze real-world data than other methods.
Improved quantum clustering analysis based on the weighted distance and its application.
阅读:3
作者:Decheng Fan, Jon Song, Pang Cholho, Dong Wang, Won CholJin
| 期刊: | Heliyon | 影响因子: | 3.600 |
| 时间: | 2018 | 起止号: | 2018 Nov 28; 4(11):e00984 |
| doi: | 10.1016/j.heliyon.2018.e00984 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
