Efficient Conditions of Enzyme-Assisted Extractions and Pressurized Liquids for Recovering Polyphenols with Antioxidant Capacity from Pisco Grape Pomace as a Sustainable Strategy.

阅读:3
作者:Poblete Jacqueline, Aranda Mario, Quispe-Fuentes Issis
The pisco industry generates significant environmental waste, particularly grape pomace, which is a rich source of phenolic compounds. Emerging extraction technologies offer promising alternatives for recovering these bioactive components. This study evaluated enzyme-assisted extraction (EAE) and pressurized liquid extraction (PLE) techniques using response surface methodology to optimize phenolic compound yield and antioxidant capacity. Specifically, a D-optimal design was applied for EAE, and a Box-Behnken design was applied for PLE. The optimal extraction conditions for EAE were 0.75 U/mL of tannase, 40 U/mL of cellulase, 20 °C, and 15 min. For PLE, the optimal parameters were 54% ethanol, 113 °C, and three extraction cycles. These conditions yielded 38.49 mg GAE g(-1) dw and 50.03 mg GAE g(-1) dw of total polyphenols and antioxidant capacities of 342.47 μmol TE g(-1) dw and 371.00 μmol TE g(-1) dw, respectively. The extracts obtained under optimal conditions were further characterized through chromatographic techniques to determine their phenolic profiles. Seven phenolic compounds were identified: gallic acid, catechin, epicatechin, 4-hydroxybenzoic acid, quercetin-3-rutinoside hydrate, quercetin-3-O-rhamnoside, and kaempferol. PLE extracts exhibited the highest concentration of these compounds. These findings demonstrate that recovering antioxidant-rich phenolic compounds from pisco grape pomace using innovative extraction methods is a viable strategy for obtaining functional ingredients and supporting sustainable industrial practices.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。