Catalytic role of formaldehyde in particulate matter formation.

阅读:3
作者:Dovrou Eleni, Bates Kelvin H, Moch Jonathan M, Mickley Loretta J, Jacob Daniel J, Keutsch Frank N
Formaldehyde (HCHO), the simplest and most abundant carbonyl in the atmosphere, contributes to particulate matter (PM) formation via two in-cloud processing pathways. First, in a catalytic pathway, HCHO reacts with hydrogen peroxide (H(2)O(2)) to form hydroxymethyl hydroperoxide (HMHP), which rapidly oxidizes dissolved sulfur dioxide (SO(2,aq)) to sulfate, regenerating HCHO. Second, HCHO reacts with dissolved SO(2,aq) to form hydroxymethanesulfonate (HMS), which upon oxidation with the hydroxyl radical (OH) forms sulfate and also reforms HCHO. Chemical transport model simulations using rate coefficients from laboratory studies of the reaction rate of HMHP with SO(2,aq) show that the HMHP pathways reduce the SO(2) lifetime by up to a factor of 2 and contribute up to ∼18% of global sulfate. This contribution rises to >50% in isoprene-dominated regions such as the Amazon. Combined with recent results on HMS, this work demonstrates that the one-carbon molecules HMHP and HCHO contribute significantly to global PM, with HCHO playing a crucial catalytic role.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。