Transcriptome-wide association studies (TWASs) help identify disease-causing genes but often fail to pinpoint disease mechanisms at the cellular level because of the limited sample sizes and sparsity of cell-type-specific expression data. Here, we propose scPrediXcan, which integrates state-of-the-art deep learning approaches that predict epigenetic features from DNA sequences with the canonical TWAS framework. Our prediction approach, ctPred, predicts cell-type-specific expression with high accuracy and captures complex gene-regulatory grammar that linear models overlook. Applied to type 2 diabetes (T2D) and systemic lupus erythematosus (SLE), scPrediXcan outperformed the canonical TWAS framework by identifying more candidate causal genes, explaining more genome-wide association study (GWAS) loci and providing insights into the cellular specificity of TWAS hits. Overall, our results demonstrate that scPrediXcan represents a significant advance, promising to deepen our understanding of the cellular mechanisms underlying complex diseases.
scPrediXcan integrates deep learning methods and single-cell data into a cell-type-specific transcriptome-wide association study framework.
阅读:4
作者:Zhou Yichao, Adeluwa Temidayo, Zhu Lisha, Salazar-Magaña Sofia, Sumner Sarah, Kim Hyunki, Gona Saideep, Nyasimi Festus, Kulkarni Rohit, Powell Joseph E, Madduri Ravi, Liu Boxiang, Chen Mengjie, Im Hae Kyung
| 期刊: | Cell Genomics | 影响因子: | 9.000 |
| 时间: | 2025 | 起止号: | 2025 May 14; 5(5):100875 |
| doi: | 10.1016/j.xgen.2025.100875 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
