COVID-19 can cause acute infectious diseases of the respiratory system, and may probably lead to heart damage, which will seriously threaten human health. Electrocardiograms (ECGs) have the advantages of being low cost, non-invasive, and radiation free, and is widely used for evaluating heart health status. In this work, a lightweight deep learning network named GM-CBAM-ResNet is proposed for diagnosing COVID-19 based on ECG images. GM-CBAM-ResNet is constructed by replacing the convolution module with the Ghost module (GM) and adding the convolutional block attention module (CBAM) in the residual module of ResNet. To reveal the superiority of GM-CBAM-ResNet, the other three methods (ResNet, GM-ResNet, and CBAM-ResNet) are also analyzed from the following aspects: model performance, complexity, and interpretability. The model performance is evaluated by using the open 'ECG Images dataset of Cardiac and COVID-19 Patients'. The complexity is reflected by comparing the number of model parameters. The interpretability is analyzed by utilizing Gradient-weighted Class Activation Mapping (Grad-CAM). Parameter statistics indicate that, on the basis of ResNet19, the number of model parameters of GM-CBAM-ResNet19 is reduced by 45.4%. Experimental results show that, under less model complexity, GM-CBAM-ResNet19 improves the diagnostic accuracy by approximately 5% in comparison with ResNet19. Additionally, the interpretability analysis shows that CBAM can suppress the interference of grid backgrounds and ensure higher diagnostic accuracy under lower model complexity. This work provides a lightweight solution for the rapid and accurate diagnosing of COVD-19 based on ECG images, which holds significant practical deployment value.
GM-CBAM-ResNet: A Lightweight Deep Learning Network for Diagnosis of COVID-19.
阅读:10
作者:Zhu Junjiang, Zhang Yihui, Ma Cheng, Wu Jiaming, Wang Xuchen, Kong Dongdong
| 期刊: | Journal of Imaging | 影响因子: | 3.300 |
| 时间: | 2025 | 起止号: | 2025 Mar 3; 11(3):76 |
| doi: | 10.3390/jimaging11030076 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
