Feature-based attention enhances performance by increasing response gain.

阅读:7
作者:Herrmann Katrin, Heeger David J, Carrasco Marisa
Covert spatial attention can increase contrast sensitivity either by changes in contrast gain or by changes in response gain, depending on the size of the attention field and the size of the stimulus (Herrmann et al., 2010), as predicted by the normalization model of attention (Reynolds & Heeger, 2009). For feature-based attention, unlike spatial attention, the model predicts only changes in response gain, regardless of whether the featural extent of the attention field is small or large. To test this prediction, we measured the contrast dependence of feature-based attention. Observers performed an orientation-discrimination task on a spatial array of grating patches. The spatial locations of the gratings were varied randomly so that observers could not attend to specific locations. Feature-based attention was manipulated with a 75% valid and 25% invalid pre-cue, and the featural extent of the attention field was manipulated by introducing uncertainty about the upcoming grating orientation. Performance accuracy was better for valid than for invalid pre-cues, consistent with a change in response gain, when the featural extent of the attention field was small (low uncertainty) or when it was large (high uncertainty) relative to the featural extent of the stimulus. These results for feature-based attention clearly differ from results of analogous experiments with spatial attention, yet both support key predictions of the normalization model of attention.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。