BACKGROUND: Nucleosomes are DNA-histone complex, each wrapping about 150 pairs of double-stranded DNA. Their function is fundamental for one of the primary functions of Chromatin i.e. packing the DNA into the nucleus of the Eukaryote cells. Several biological studies have shown that the nucleosome positioning influences the regulation of cell type-specific gene activities. Moreover, computational studies have shown evidence of sequence specificity concerning the DNA fragment wrapped into nucleosomes, clearly underlined by the organization of particular DNA substrings. As the main consequence, the identification of nucleosomes on a genomic scale has been successfully performed by computational methods using a sequence features representation. RESULTS: In this work, we propose a deep learning model for nucleosome identification. Our model stacks convolutional layers and Long Short-term Memories to automatically extract features from short- and long-range dependencies in a sequence. Using this model we are able to avoid the feature extraction and selection steps while improving the classification performances. CONCLUSIONS: Results computed on eleven data sets of five different organisms, from Yeast to Human, show the superiority of the proposed method with respect to the state of the art recently presented in the literature.
Deep learning architectures for prediction of nucleosome positioning from sequences data.
阅读:4
作者:Di Gangi Mattia, Lo Bosco Giosuè, Rizzo Riccardo
| 期刊: | BMC Bioinformatics | 影响因子: | 3.300 |
| 时间: | 2018 | 起止号: | 2018 Nov 20; 19(Suppl 14):418 |
| doi: | 10.1186/s12859-018-2386-9 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
