Efficient Post-Shrinkage Estimation Strategies in High-Dimensional Cox's Proportional Hazards Models.

阅读:7
作者:Ahmed Syed Ejaz, Arabi Belaghi Reza, Hussein Abdulkhadir Ahmed
Regularization methods such as LASSO, adaptive LASSO, Elastic-Net, and SCAD are widely employed for variable selection in statistical modeling. However, these methods primarily focus on variables with strong effects while often overlooking weaker signals, potentially leading to biased parameter estimates. To address this limitation, Gao, Ahmed, and Feng (2017) introduced a corrected shrinkage estimator that incorporates both weak and strong signals, though their results were confined to linear models. The applicability of such approaches to survival data remains unclear, despite the prevalence of survival regression involving both strong and weak effects in biomedical research. To bridge this gap, we propose a novel class of post-selection shrinkage estimators tailored to the Cox model framework. We establish the asymptotic properties of the proposed estimators and demonstrate their potential to enhance estimation and prediction accuracy through simulations that explicitly incorporate weak signals. Finally, we validate the practical utility of our approach by applying it to two real-world datasets, showcasing its advantages over existing methods.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。