Regularization methods such as LASSO, adaptive LASSO, Elastic-Net, and SCAD are widely employed for variable selection in statistical modeling. However, these methods primarily focus on variables with strong effects while often overlooking weaker signals, potentially leading to biased parameter estimates. To address this limitation, Gao, Ahmed, and Feng (2017) introduced a corrected shrinkage estimator that incorporates both weak and strong signals, though their results were confined to linear models. The applicability of such approaches to survival data remains unclear, despite the prevalence of survival regression involving both strong and weak effects in biomedical research. To bridge this gap, we propose a novel class of post-selection shrinkage estimators tailored to the Cox model framework. We establish the asymptotic properties of the proposed estimators and demonstrate their potential to enhance estimation and prediction accuracy through simulations that explicitly incorporate weak signals. Finally, we validate the practical utility of our approach by applying it to two real-world datasets, showcasing its advantages over existing methods.
Efficient Post-Shrinkage Estimation Strategies in High-Dimensional Cox's Proportional Hazards Models.
阅读:17
作者:Ahmed Syed Ejaz, Arabi Belaghi Reza, Hussein Abdulkhadir Ahmed
| 期刊: | Entropy | 影响因子: | 2.000 |
| 时间: | 2025 | 起止号: | 2025 Feb 28; 27(3):254 |
| doi: | 10.3390/e27030254 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
