Modeling Soil Temperature for Different Days Using Novel Quadruplet Loss-Guided LSTM.

阅读:5
作者:Wang Xuezhi, Li Wenhui, Li Qingliang, Li Xiaoning
Soil temperature (T (s) ), a key variable in geosciences study, has generated growing interest among researchers. There are many factors affecting the spatiotemporal variation of T (s) , which poses immense challenges for the T (s) estimation. To enrich processing information on loss function and achieve better performance in estimation, the paper designed a new long short-term memory model using quadruplet loss function as an intelligence tool for data processing (QL-LSTM). The model in this paper combined the traditional squared-error loss function with distance metric learning between the sample features. It can zoom analyze the samples accurately to optimize the estimation accuracy. We applied the meteorological data from Laegern and Fluehli stations at 5, 10, and 15 cm depth on the 1st, 5th, and 15th day separately to verify the performance of the proposed soil temperature estimation model. Meanwhile, this paper inputs the variables into the proposed model including radiation, air temperature, vapor pressure deficit, wind speed, air pressure, and past T (s) data. The performance of the model was tested by several error evaluation indices, including root mean square error (RMSE), mean absolute error (MAE), Nash-Sutcliffe model efficiency coefficient (NS), Willmott Index of Agreement (WI), and Legates and McCabe index (LMI). As the test results at different soil depths show, our model generally outperformed the four existing advanced estimation models, namely, backpropagation neural networks, extreme learning machines, support vector regression, and LSTM. Furthermore, as experiments show, the proposed model achieved the best performance at the 15 cm depth of soil on the 1st day at Laegern station, which achieved higher WI (0.998), NS (0.995), and LMI (0.938) values, and got lower RMSE (0.312) and MAE (0.239) values. Consequently, the QL-LSTM model is recommended to estimate daily T (s) profiles estimation on the 1st, 5th, and 15th days.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。